
Building an Affordable Data Diode to Protect Journalists

Peter Story
Clark University

PeStory@clarku.edu

Abstract
Journalists and other high-risk populations must protect them-
selves from powerful adversaries. For example, journalists
using SecureDrop open potentially malicious documents on
an air-gapped workstation to protect themselves from data ex-
filtration. However, transferring documents across an air-gap
is inconvenient, and challenging to do securely. We propose
using a “data diode,” a unidirectional network device, to navi-
gate an air-gap securely and conveniently. Unfortunately, pro-
prietary off-the-shelf data diodes are prohibitively expensive,
with prices in the thousands of dollars. First, we survey solu-
tions for using commodity hardware to build a cost-effective
data diode. Then, we build a data diode for less than $80. Next,
we describe the performance and reliability of transferring
data across the device. We test existing software to identify
settings that enable reliable data transfers. We also describe
our prototype software, pydiode, which transfers data reliably
at higher speeds than the other software we tested. Finally,
we explain next steps to prepare data diodes for deployment
to newsrooms.

1 Introduction

Journalists play a crucial role in democratic societies by hold-
ing institutions accountable to the public. Since journalists
often report about powerful entities, such as governments,
journalists are high-value targets for hackers. This means that
journalists require protection from attacks beyond the average
individual’s threat model, such as protection from zero-day
attacks. Furthermore, journalists are exposed to high-risk,

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
USENIX Symposium on Usable Privacy and Security (SOUPS) 2023.
August 6–8, 2023, Anaheim, CA, USA

because journalists often communicate with untrusted indi-
viduals. Protecting journalists from hackers is important for
personal safety, and to protect the identities of journalistic
sources. Protection of sources’ identities is an important part
of journalistic practice, allowing sources to share information
with journalists without fear of reprisal.

Journalists use a variety of security tools to protect them-
selves and their sources, including general-purpose tools (e.g.,
encrypted messaging apps), as well as specialized tools [4].
One such specialized tool is SecureDrop, which journalists
use to accept anonymous tips [21]. When communicating
with an anonymous source, SecureDrop recommends that
journalists avoid opening documents on their primary internet-
connected workstation [23]. This is because a malicious doc-
ument could compromise and exfiltrate data from an internet-
connected device. Instead, journalists are instructed to trans-
port potentially malicious documents to an air-gapped work-
station using a USB drive to navigate the air-gap. Using USB
drives to navigate the air-gap is problematic for several rea-
sons. First, is it inconvenient [4], which may reduce use of
SecureDrop and cause operational security issues (e.g., open-
ing documents on the internet-connected workstation to save
time). Second, a compromised air-gapped device could mod-
ify the firmware of the USB drive, which could compromise
the internet-connected workstation the next time it is plugged-
in (i.e., a “BadUSB” attack) [5,6,20,32]. BadUSB attacks can
be mitigated by using disposable media, but this would carry
an even greater cost to usability. To improve convenience
and security, the SecureDrop developers are currently imple-
menting a next-generation version of SecureDrop which will
eliminate the physical air-gap [11, 29]. Instead, documents
will be opened in disposable virtual machines, running on a
single internet-connected workstation running Qubes OS [26].
This architecture will be a step forward for convenience, but it
depends on the isolation provided by the Xen hypervisor used
by Qubes OS. Vulnerabilities in the hypervisor, or hardware-
based vulnerabilities, could allow hackers to exfiltrate data
from the system [29]. Without an air-gap, the new architecture
may not fully meet the needs of SecureDrop’s most security-

conscious users.
Fundamentally, an air-gap seems to offer a trade-off of high

security for impaired usability. We propose a solution that will
offer both high security and usability: use of a “data diode” to
navigate the air-gap. Data diodes are network devices that are
physically limited to only transfer data in one direction. Data
diodes are widely deployed in security-critical environments,
such as nuclear power plants [1,3,8,13,24] and when handling
classified information [2]. One challenge to deploying a data
diode in a newsroom is the high cost of integrated off-the-
shelf solutions, with prices in the thousands of dollars [12].
Multiple sources describe how to create data diodes using
commodity hardware [14,25,33,34]. However, some of these
solutions require significant technical knowledge to deploy,
and their performance and reliability is not fully described.

Our research questions are:

1. What solutions are available to implement a data diode
using commodity hardware and software?

2. How performant, reliable, cost effective, and usable are
these solutions?

3. Are there opportunities to improve upon existing solu-
tions?

In Related Work (§ 2), we describe existing solutions for
constructing data diodes. In Method (§ 3), we describe the
hardware we used to construct a data diode, and our approach
to measuring its performance and reliability. We also describe
the design of our prototype software, pydiode [31]. In Results
(§ 4), we describe the performance and reliability of transfer-
ring data over the data diode we constructed. We show that
pydiode transfers data reliably at higher speeds than the other
software we tested. In Discussion and Future Work (§ 5),
we describe the next steps towards preparing data diodes for
deployment to newsrooms.

2 Related Work

2.1 Essential Components of a Data Diode
A data diode is a network device which is only physically
capable of transferring data in one direction. A network fire-
wall is not a data diode, since a software vulnerability could
compromise the firewall and modify its rules. In contrast, a
data diode should include hardware that only allows data to be
transferred in one direction. These physical properties allow
for strong guarantees about the direction of data flow [7].

A data diode’s unidirectional data flow makes it non-trivial
to transfer data reliably. Many layers of the network stack
assume bidirectional data flow, and breaking this assumption
requires additional configuration steps. Furthermore, without
bidirectional traffic, a receiver cannot indicate when packets
are corrupted or lost, so transferring data reliably requires
introducing redundancy and/or error correction [18].

2.2 Commodity Hardware for Data Diodes

Various sources have proposed ways to implement data diodes
using commodity hardware. These solutions cost on the order
of $100, in contrast to industrial solutions which cost thou-
sands of dollars [12]. Table 1 summarizes these projects. We
choose to test the OSDD project’s solution, since it reported
high transfer speeds, and a typical IT department would have
the technical knowledge needed to configure it [33].

2.3 Software for Data Diodes

There are different software options for transferring data over
a unidirectional network link, which we summarize in Ta-
ble 2. Of course, the software cannot rely on bidirectional
communication, so UDP is used instead of TCP. We decided
to test netcat and UDPcast, because they support transferring
data from a standard input stream, which makes these options
very flexible. We also tested our own software prototype, py-
diode [31], which similarly transfers data from standard input.
In contrast, godiode and BlindFTP transfer a directory of files,
which would make transferring stream-based data difficult.
All the options we considered are open-source.

3 Method

We choose to test the hardware described by the OSDD
project [33], using the netcat [36] and UDPcast [15] programs
to transfer data. We also tested our own software prototype,
pydiode [31].

3.1 Data Diode Assembly

We purchased the hardware from Amazon in Spring 2023 for
a total cost of approximately $78. Specifically, we ordered:

• 2x Cat 6 Ethernet cable (3 foot Amazon Basics, $4.66
each)

• 2x Gigabit Ethernet Copper to Single Mode Fiber Media
Converter (TP-Link MC210CS, $29.99 each)

• 1x SC Single Mode Fiber Optical Splitter ($9.04)

Next, we assembled the data diode according to the OSDD
project’s instructions. As shown in Figure 1, we connected
the optical splitter’s input to the TX port of the send switch
(i.e., the transmit port). Next, we connected one of the optical
splitter’s outputs to the RX port of the send switch (i.e., the
receive port), and the other output to the RX port of the receive
switch. Finally, we used electrical tape to cover the TX port
of the receive switch. Without the loop from the send switch’s
TX to its RX, Ethernet autonegotiation will fail, which will
prevent data transfer [9, 35].

Project Summary Described Transfer
Speed

Required Technical
Knowledge

OSDD
[33]

Sender and receiver are connected using gigabit ethernet fiber media
convertors. A fiber splitter is needed to enable communication be-
tween the media convertors.

~600 Mbit/sec Standard network
hardware

DYODE
[34]

Sender and receiver are connected by ethernet to Raspberry Pis.
The Pis communicate with each other through fast ethernet fiber
media convertors. A third fiber media convertor is needed to enable
communication between the media convertors.

“Low speed, a few
mbs”

Standard network
hardware

Sender and receiver are connected by ethernet to Raspberry Pis. The
Pis communicate with each other through an optocoupler using their
serial connectors.

Breadboarding

godiode
[14]

Sender and receiver are connected using gigabit ethernet fiber media
convertors. Microsoldering is needed to enable communication be-
tween the media convertors.

750+ Mbit/sec Microsoldering

Tinfoil
Chat [25]

Sender and receiver are connected using USB-TTL adapters, which
communicate with each other through an optocoupler.

~1 Mbit/sec Breadboarding

Table 1: A summary of options for implementing a data diode using commodity hardware. The listed transfer speeds come from
the projects themselves, rather than our own testing.

Software Summary Input Format
netcat [36] netcat supports sending data via UDP or TCP. Different implementations of netcat are

available on different platforms.
Standard input stream
(or file via redirection)

UDPcast [15] UDPcast supports sending data via UDP. It offers several options to improve reliability
including rate limiting and forward error correction based on Vandermonde matrices [28].
It is written in C.

Standard input stream or
file

pydiode [31] We created pydiode to send data via UDP. It uses rate limiting and redundancy to improve
reliability. It is written in Python using asyncio.

Standard input stream
(or file via redirection)

godiode [14] godiode supports sending data via UDP. It uses file hashes and rate limiting to improve
reliability. It is written in Go.

Directory of files

BlindFTP [17] BlindFTP supports sending data via UDP. It uses rate limiting and redundancy to improve
reliability. It is written in Python, in French.

Directory of files

Table 2: A summary of command-line programs for transferring data over a data diode.

Figure 1: We built a data diode according to the OSDD project’s instructions [33]. The switch on the left sends data to the switch
on the right. The switch on the right physically cannot transfer data in the reverse direction, since its TX port is taped over.

Figure 2: We tested transferring data through our data diode
using an Intel NUC 11 Pro (NUC11TNHi50L). We used the
bottom interface to send data to the top interface.

3.2 Testing Software for Unidirectional Data
Transfer

Next, we tested using netcat [36], UDPcast [15], and py-
diode [31] to transfer data through the data diode. Our goal
was to identify configurations that would maximize through-
put and reliability. For testing purposes, we connected both
sides of the data diode to a single workstation. We tested using
an Intel NUC 11 Pro (NUC11TNHi50L) with 64GB of RAM
and 1TB of SSD storage. We used an Intel NUC because the
SecureDrop developers recommend running SecureDrop on
NUCs [22]. We selected a dual LAN model, which allowed
us to connect both sides of the data diode without using ex-
ternal adapters (Figure 2). To manage the device remotely,
we connected a USB-C Ethernet adapter to our university’s
LAN.

We installed Ubuntu 22.04 on our workstation. Next, we
assigned static IP address 10.0.1.1/24 to the receive interface.
Then, we created a network namespace, moved the send in-
terface to this namespace, assigned IP address 10.0.1.2/24 to
the send interface, and added a route to the 10.0.1.1 address.
A network namespace is needed to enforce data transfer over
the physical interface: otherwise, traffic will take a shortcut
through the kernel, and won’t use the data diode at all. To
use the network namespace, we prefixed the commands we
used to send data with the sudo ip netns exec sender
command. Finally, we added a manual ARP entry (Address
Resolution Protocol) for the receive IP address, since ARP
cannot resolve without bidirectional communication.

Our goal was to determine the optimal configuration for
each software. Specifically, the configuration with maximum
data transfer speed for which all data transfers would succeed.
We tested the software by repeatedly transferring data through
the data diode, and comparing the checksums of the sent and
received data. We chose to transfer 1 Gbit (109 bits) of ran-
domly generated data in each trial, because 1 Gbit exceeded
the default network buffer size, and we wanted our results to
generalize to even larger data transfers. Figure 3 describes
our experimental design in pseudocode.

We did not explore modifying the kernel network buffer

for i in range(n_trials):
generate random data
for all combinations of configurable options:

transfer data through the data diode
compare checksums of sent and received data

Figure 3: We tested transferring data through the data diode
with different combinations of configurable options. We tested
each combination many times, with randomly generated data
each time.

sizes or process priorities, although prior work suggested these
options may have an effect [18, 19]. Our reasoning was that
we wanted our results to generalize to large file transfers (i.e.,
file sizes that can’t fit entirely within a buffer) and to cases
when other processes might also have high priority.

Configuring netcat

We tested different configurable options for each program.
For netcat, we varied the transfer rate. Since netcat doesn’t
include a parameter to control transfer rate, we controlled the
rate at which data was piped into the netcat command’s stan-
dard input. We initially enforced the transfer rate using the pv
command [37], as suggested by the OSDD project. However,
we found that pv’s --rate-limit argument enforces an aver-
age rate limit, which allowed the transfer rate to briefly spike
to “catch up,” which resulted in packet loss. Thus, we wrote
our own program, regulator.py, to enforce rate limits more
consistently. Figure 4 shows the commands we used to test
netcat.

To send data
python3.11 regulator.py \

--chunk-size 16384 --chunk-rate 762.939 \
< /tmp/random_data \

| sudo ip netns exec sender nc -u -q 0 \
-s 10.0.1.2 10.0.1.1 1234

To receive data
nc -u -w 1 10.0.1.1 -l 1234

Figure 4: We used these commands to send and receive
data using netcat. regulator.py reads chunks of data from
standard input and writes them to standard output at the
specified rate. The --chunk-rate argument is calculated
by: max_bitrate/8/chunk_size. The --chunk-size of 16384
bytes is the size of packets sent by netcat when the regulator
isn’t used. To test without a rate-limit, we omitted the regula-
tor command and sent data directly to netcat.

Configuring UDPcast

For UDPcast, we varied the transfer rate and forward er-
ror correction (FEC) settings using the --max-bitrate and
--fec arguments. Note that --max-bitrate “is the raw bi-
trate, including packet headers, forward error correction, re-
transmissions, etc. Actual payload bitrate will be lower” [16].
FEC is implemented using an erasure code based on Van-
dermonde matrices [28]. The --fec argument specifies how
many “stripes” each chunk of data is split into, the number
of FEC packets included with each stripe, and the number
of data packets in each stripe [16]. For example, with --fec
8x16/128 each chunk of data will be sent in 8 stripes, and
each stripe will have 16 FEC packets and 128 data packets.
Figure 5 shows the commands we used to test UDPcast.

To send data
sudo ip netns exec sender udp-sender \

--interface enp89s0 --async --broadcast \
--rexmit-hello-interval 100 --autostart 4 \
--mcast-rdv-address 10.0.1.1 \
--max-bitrate 100000000 \
< /tmp/random_data

To receive data
udp-receiver --nosync --interface enp88s0

Figure 5: We used these commands to send and receive data
using UDPcast.

pydiode Prototype

For comparison with netcat and UDPcast, we implemented
our own software prototype, pydiode [31]. For resilience
against packet loss, pydiode can send each chunk of data
a configurable number of times (i.e., “redundancy”), where
each chunk is composed of a configurable number of pack-
ets. The receiver waits to output data until all of a chunk’s
packets have been received. To distinguish between chunks,
pydiode alternates the color of the chunk between “red” and
“blue.” When the data transfer is complete, a “black” chunk
is sent, to indicate the end-of-file. Each packet consists of

a five-byte header followed by the payload. The header in-
cludes the chunk color, the number of packets in the chunk,
and the sequence number of the packet. pydiode sleeps after
sending short bursts of packets to enforce a user-specified
maximum bitrate. We implemented pydiode in Python us-
ing the asyncio library. We tested pydiode without and with
retransmitting chunks (i.e., using --redundancy of 1 and 2,
respectively). Figure 6 depicts a series of packets sent by py-
diode. Figure 7 shows the commands we used to test pydiode.

To send data
sudo ip netns exec sender pydiode \

send 10.0.1.1 10.0.1.2 \
--max-bitrate 100000000 --redundancy 2 \
< /tmp/random_data

To receive data
pydiode receive 10.0.1.1

Figure 7: We used these commands to send and receive data
using pydiode.

4 Results

Tables 3, 4, and 5 show the results of testing netcat, UDP-
cast, and pydiode respectively. For each tool, transfers with
lower maximum bitrates are more likely to succeed. With
netcat, a high rate-limit (e.g., 1 Gbit/sec) enforced by our
regulator.py program is much more reliable than no rate-
limit at all. With UDPcast, increasing the number of forward
error correction packets improved transfer reliability. With-
out redundancy, our pydiode prototype was less reliable than
netcat and UDPcast. However, when we enabled redundant
data transmission, all of pydiode’s transfers succeeded. Fur-
thermore, with redundant data transmission enabled, pydiode
transferred data reliably in less time than either netcat or
UDPcast.

All of netcat’s transfers succeeded when a maximum bitrate
of 100 Mbit/sec was enforced by our regulator.py program,
requiring an average of 11.02 seconds. UDPcast transferred
data reliably using several configurations. UDPcast’s fastest

0

A

1

B

2

C

0

A

1

B

2

C

0

D

1

E

2

F

0

D

1

E

2

F

0

G

1

H

2

I

0

G

1

H

2

I

0

0

0

0

Red Chunk Blue Chunk Red Chunk Black Chunk

Sequence Number

Payload

Figure 6: Our pydiode prototype sends packets in “chunks,” which alternate between “red” and “blue.” For resilience against
packet loss, each chunk is transmitted a configurable number of times. The end-of-file is signalled by a “black” chunk. This
diagram shows three distinct chunks of data, each of which is transmitted twice. Each chunk of data consists of three packets,
with sequence numbers 0, 1, and 2. In practice, we sent data chunks with up to 100 packets each, which with a “redundancy” of
two makes pydiode resilient to packet loss of up to 100 sequential packets.

netcat Results
Max Bitrate Succeeded Avg. Duration
100 Mbit/sec 100.0% 11.02 sec
250 Mbit/sec 99.9% 5.03 sec
500 Mbit/sec 98.4% 3.03 sec
750 Mbit/sec 96.7% 2.36 sec

1 Gbit/sec 98.6% 2.07 sec
unlimited 3.0% 2.06 sec

Table 3: We tested transferring 1 Gbit of data using netcat. For
each configuration, we performed 1000 trials. netcat required
an average of 11.02 seconds to transfer data reliably.

reliable transfers were achieved with an unlimited bitrate
and FEC 8x16/128, requiring an average of 3.49 seconds.
Finally, pydiode transferred data reliably when redundant data
transmission was enabled. pydiode’s fastest transfers required
just 2.17 seconds, and were achieved with a maximum bitrate
of 1 Gbit/sec.

Note that transfers with netcat and UDPcast always take
at least one second: netcat’s receive command exits after
not receiving data for one second, while UDPcast takes half
a second to start the transfer, and half a second before the
receive command exits. But even if the time used for startup
and shutdown is ignored, pydiode still transfers data reliably
more quickly than both netcat and UDPcast.

Limitations and Deployment Recommendations

There are several things to consider when interpreting our
results. First, in cases where all our trials succeeded, the prob-
ability of a transfer error is very low, but not zero. It might be
possible to detect these low probability failures by running
more trials over a longer period of time (i.e., many days). Sec-
ond, our experiments were run on a dedicated testing device.
If the device was under load from other tasks, error rates might
be higher than we observed. Third, we ran all our experiments
on one data diode. It is possible that small variations in the
data diode’s hardware could result in slightly different results
if run using different hardware.

For all these reasons, in cases where reliability is more im-
portant than transfer speed, we recommend running the tools
with conservative settings. For UDPcast, this means transfer-
ring data with a high FEC setting (e.g., 8x32/128) and a lower
transfer speed. For pydiode, this can be achieved by simply
increasing the redundancy of the transfer. Especially if the
files being transferred are small, the settings can be adjusted
to extremely conservative values (e.g., setting pydiode’s re-
dundancy to 10), which should make transfer errors even less
likely.

UDPcast Results
Max Bitrate FEC Succeeded Avg. Duration
100 Mbit/sec None 100.0% 11.31 sec
250 Mbit/sec None 100.0% 5.14 sec
500 Mbit/sec None 94.8% 3.06 sec
750 Mbit/sec None 95.3% 2.37 sec

1 Gbit/sec None 97.5% 2.07 sec
unlimited None 96.8% 2.06 sec

100 Mbit/sec 8x8/128 100.0% 12.48 sec
250 Mbit/sec 8x8/128 100.0% 6.06 sec
500 Mbit/sec 8x8/128 99.9% 4.00 sec
750 Mbit/sec 8x8/128 98.6% 3.31 sec

1 Gbit/sec 8x8/128 98.5% 3.00 sec
unlimited 8x8/128 98.7% 3.01 sec

100 Mbit/sec 8x16/128 100.0% 13.16 sec
250 Mbit/sec 8x16/128 100.0% 6.72 sec
500 Mbit/sec 8x16/128 100.0% 4.54 sec
750 Mbit/sec 8x16/128 99.5% 3.81 sec

1 Gbit/sec 8x16/128 99.8% 3.49 sec
unlimited 8x16/128 100.0% 3.49 sec

100 Mbit/sec 8x32/128 100.0% 14.50 sec
250 Mbit/sec 8x32/128 100.0% 8.01 sec
500 Mbit/sec 8x32/128 100.0% 5.57 sec
750 Mbit/sec 8x32/128 100.0% 4.76 sec

1 Gbit/sec 8x32/128 100.0% 4.37 sec
unlimited 8x32/128 100.0% 4.37 sec

Table 4: We tested transferring 1 Gbit of data using UDPcast.
For each configuration, we performed 1000 trials. UDPcast
required an average of 3.49 seconds to transfer data reliably.

pydiode Results
Max Bitrate Redundancy Succeeded Avg. Duration
100 Mbit/sec 1 99.8% 10.35 sec
250 Mbit/sec 1 99.1% 4.25 sec
500 Mbit/sec 1 96.1% 2.18 sec
750 Mbit/sec 1 86.7% 1.52 sec

1 Gbit/sec 1 81.8% 1.13 sec
100 Mbit/sec 2 100.0% 20.49 sec
250 Mbit/sec 2 100.0% 8.36 sec
500 Mbit/sec 2 100.0% 4.28 sec
750 Mbit/sec 2 100.0% 2.94 sec

1 Gbit/sec 2 100.0% 2.17 sec

Table 5: We tested transferring 1 Gbit of data using our own
software, pydiode. For each configuration, we performed 1000
trials. pydiode required an average of 2.17 seconds to transfer
data reliably.

5 Discussion and Future Work

Our testing shows it is possible to create a cost-effective
and high-performance data diode using commodity hard-
ware. However, some additional work is needed before this
solution can be deployed to newsrooms. First, we plan to
create a user-interface to support drag-and-drop file trans-
fers between the internet-connected and air-gapped devices.
We anticipate that this solution will be more usable and se-
cure than using USB drives to navigate the air-gap. A data
diode can also be used with the next-generation version of
SecureDrop, to protect against vulnerabilities that would al-
low escape from virtual machine-based isolation. This will
allow highly security-conscious users to continue using an
air-gap without sacrificing usability. Second, we plan to per-
form more extensive testing of UDPcast and pydiode, to see
whether transfer failures are possible even using the settings
we validated in these preliminary tests. To further improve
reliability, pydiode’s protocol could be implemented using a
higher-performance language like Rust [27]. State-of-the-art
error-correction, as offered by Raptor codes, may yield further
improvements [30].

It is important to recognize that deploying a data diode
alongside SecureDrop is just one step towards protecting jour-
nalists from digital threats. For example, if a journalist doesn’t
realize that a file is malicious after initially viewing it on the
air-gapped device, they might transfer the malicious file to
their personal device and compromise that device. Also, if the
air-gapped device and an internet-connected device are both
compromised, a side-channel could be used to exfiltrate data
from the air-gapped device [10]. Perhaps more significantly,
journalists are exposed to threats whenever they browse the
web, read email, or exchange text messages with sources.
Looking towards the future, data diodes could be used to
improve the security of journalists’ other messaging tools.
For example, Signal’s attack surface could be dramatically re-
duced if it was refactored to seamlessly open attachments on
an air-gapped device. Furthermore, a miniaturized data diode
(e.g., an optocoupler) could be used to create a single-board
device that includes both internet-connected and air-gapped
systems. Such a system would be portable, and could help
journalists continue their conversations with sources in a se-
cure environment.

Of course, data diodes also have applications beyond jour-
nalism. Consider networked devices which should only be
allowed to transmit data, due to fear of compromise from
software vulnerabilities. These devices might be IoT devices,
industrial control equipment, or anything which transmits a
stream of data, perhaps for a visualization dashboard. A data
diode can enforce traffic flow with greater assurance than
a firewall, since a firewall’s software can be compromised,
whereas the data diode’s physical properties enforce the di-
rection of network traffic. As another example, any user who
needs to open potentially malicious files could benefit from

opening those files on an air-gapped system. For instance, a
security researcher could inspect malware on an air-gapped
system, and a data diode could make it more convenient to
transfer files to such a system. Data diodes are a powerful
security primitive, and we hope our work increases access to
data diodes for journalists, industry, and security researchers.

References

[1] Advisory Committee on Reactor Safeguards Digital
Instrumentation and Control. Official Transcript of
Proceedings Nuclear Regulatory Commission, October
2021.

[2] Ross D. Arnold. Strategies for Transporting Data Be-
tween Classified and Unclassified Networks. Techni-
cal report, Defense Technical Information Center, Fort
Belvoir, VA, March 2016. https://apps.dtic.mil/
sti/citations/AD1005160.

[3] Brad Bergemann. Regulatory Guide 5.83 Cyber Security
Event Notifications, July 2015.

[4] Charles Berret. Guide to SecureDrop, 2016.

[5] Stéphanie Blanchet. BadUSB, the threat hidden in or-
dinary objects. Technical report, Bertin Technologies,
June 2018.

[6] B S Vishnu Charan and Lalit Kulkarni. Survey On
Micro-Controller Based Bad USB Attacks. Journal of
Positive School Psychology, 2023.

[7] Fred Cohen. Designing provably correct information
networks with digital diodes. Computers & Secu-
rity, 7(3):279–286, June 1988. https://linkinghub.
elsevier.com/retrieve/pii/016740488890034X.

[8] James Downs. Draft Regulatory Guide DG-5062 Cyber
Security Programs For Nuclear Fuel Cycle Facilities,
January 2017.

[9] Dmitry Grigoryev. Implement send-only (one-way)
Ethernet cable, Dec 2017. https://electronics.
stackexchange.com/a/279277.

[10] Mordechai Guri and Yuval Elovici. Bridgeware:
The air-gap malware. Communications of the ACM,
61(4):74–82, March 2018. https://dl.acm.org/doi/
10.1145/3177230.

[11] Jennifer Helsby. Next-Generation SecureDrop: Protect-
ing Journalists from Malware. Enigma 2020, January
2020.

[12] Fend Incorporated. Data Diode Solutions For Protecting
Critical Assets, Apr 2023. https://www.fend.tech/
products.

https://apps.dtic.mil/sti/citations/AD1005160
https://apps.dtic.mil/sti/citations/AD1005160
https://linkinghub.elsevier.com/retrieve/pii/016740488890034X
https://linkinghub.elsevier.com/retrieve/pii/016740488890034X
https://electronics.stackexchange.com/a/279277
https://electronics.stackexchange.com/a/279277
https://dl.acm.org/doi/10.1145/3177230
https://dl.acm.org/doi/10.1145/3177230
https://www.fend.tech/products
https://www.fend.tech/products

[13] Industrial Control Systems Cyber Emergency Response
Team. Recommended Practice: Improving Industrial
Control System Cybersecurity with Defense-in-Depth
Strategies, September 2016.

[14] klockcykel. DIY Data Diode, Sep 2022. https://
github.com/klockcykel/godiode.

[15] Alain Knaff. UDPcast, Apr 2023. http://www.
udpcast.linux.lu.

[16] Alain Knaff. UDPcast commandline options, Apr 2023.
http://www.udpcast.linux.lu/cmd.html.

[17] Philippe Lagadec. Diode r´eseau et ExeFilter : 2 projets
pour des interconnexions s´ecuris´ees. Proceedings of
SSTIC06, 2006.

[18] Honggang Lin. Research on Packet Loss Issues
in Unidirectional Transmission. Journal of Comput-
ers, 8(10):2664–2671, October 2013. http://www.
jcomputers.us/vol8/jcp0810-29.pdf.

[19] Linux. Linux Base Driver for 10 Gigabit In-
tel(R) Ethernet Network Connection, Mar 2011.
https://www.kernel.org/doc/Documentation/
networking/ixgb.txt.

[20] Hongyi Lu, Yechang Wu, Shuqing Li, You Lin, Chaozu
Zhang, and Fengwei Zhang. BADUSB-C: Revisiting
BadUSB with Type-C. 2021 IEEE Security and Privacy
Workshops (SPW), 2021.

[21] Freedom of the Press Foundation. SecureDrop, Apr
2023. https://securedrop.org.

[22] Freedom of the Press Foundation. SecureDrop: Hard-
ware, Apr 2023. https://docs.securedrop.org/en/
stable/admin/installation/hardware.html.

[23] Freedom of the Press Foundation. Secure-
Drop: Using the Secure Viewing Station, Apr
2023. https://docs.securedrop.org/en/stable/
journalist/svs.html.

[24] Office of Nuclear Regulatory Research. Regulatory
Guide 5.71 Cyber Security Programs For Nuclear Facil-
ities, January 2010.

[25] Markus Ottela. Tinfoil Chat, Apr 2023. https://
github.com/maqp/tfc.

[26] The Qubes OS Project. Qubes OS, Apr 2023. https:
//www.qubes-os.org.

[27] Eugene Retunsky. Benchmarking low-level I/O:
C, C++, Rust, Golang, Java, Python, Feb 2021.
https://medium.com/star-gazers/benchmarking-
low-level-i-o-c-c-rust-golang-java-python-
9a0d505f85f7.

[28] Luigi Rizzo. Effective erasure codes for reliable com-
puter communication protocols. ACM SIGCOMM
Computer Communication Review, 27(2):24–36, April
1997. https://dl.acm.org/doi/10.1145/263876.
263881.

[29] SecureDrop team. Design of the Next-Generation Se-
cureDrop Workstation, February 2020.

[30] A. Shokrollahi. Raptor codes. IEEE Transactions on In-
formation Theory, 52(6):2551–2567, June 2006. http:
//ieeexplore.ieee.org/document/1638543/.

[31] Peter Story. pydiode, Jul 2023. https://github.com/
ClarkuCSCI/pydiode.

[32] Stella Vouteva, Ruud Verbij, and Jarno Roos. Feasibil-
ity and Deployment of Bad USB. System and Network
Engineering Master Research Project, University of Am-
sterdam, February 2015.

[33] Vrolijk. Get started with Data Diodes, April 2023.
https://github.com/Vrolijk/OSDD.

[34] Wavestone. Do Your Own Diode, July 2017. https:
//github.com/wavestone-cdt/dyode.

[35] Wikipedia. autonegotiation, Apr 2023. https://en.
wikipedia.org/wiki/Autonegotiation.

[36] Wikipedia. netcat, Apr 2023. https://en.wikipedia.
org/wiki/Netcat.

[37] Andrew Wood. pv - Pipe Viewer, Sep 2021. http:
//www.ivarch.com/programs/pv.shtml.

https://github.com/klockcykel/godiode
https://github.com/klockcykel/godiode
http://www.udpcast.linux.lu
http://www.udpcast.linux.lu
http://www.udpcast.linux.lu/cmd.html
http://www.jcomputers.us/vol8/jcp0810-29.pdf
http://www.jcomputers.us/vol8/jcp0810-29.pdf
https://www.kernel.org/doc/Documentation/networking/ixgb.txt
https://www.kernel.org/doc/Documentation/networking/ixgb.txt
https://securedrop.org
https://docs.securedrop.org/en/stable/admin/installation/hardware.html
https://docs.securedrop.org/en/stable/admin/installation/hardware.html
https://docs.securedrop.org/en/stable/journalist/svs.html
https://docs.securedrop.org/en/stable/journalist/svs.html
https://github.com/maqp/tfc
https://github.com/maqp/tfc
https://www.qubes-os.org
https://www.qubes-os.org
https://medium.com/star-gazers/benchmarking-low-level-i-o-c-c-rust-golang-java-python-9a0d505f85f7
https://medium.com/star-gazers/benchmarking-low-level-i-o-c-c-rust-golang-java-python-9a0d505f85f7
https://medium.com/star-gazers/benchmarking-low-level-i-o-c-c-rust-golang-java-python-9a0d505f85f7
https://dl.acm.org/doi/10.1145/263876.263881
https://dl.acm.org/doi/10.1145/263876.263881
http://ieeexplore.ieee.org/document/1638543/
http://ieeexplore.ieee.org/document/1638543/
https://github.com/ClarkuCSCI/pydiode
https://github.com/ClarkuCSCI/pydiode
https://github.com/Vrolijk/OSDD
https://github.com/wavestone-cdt/dyode
https://github.com/wavestone-cdt/dyode
https://en.wikipedia.org/wiki/Autonegotiation
https://en.wikipedia.org/wiki/Autonegotiation
https://en.wikipedia.org/wiki/Netcat
https://en.wikipedia.org/wiki/Netcat
http://www.ivarch.com/programs/pv.shtml
http://www.ivarch.com/programs/pv.shtml

	Introduction
	Related Work
	Essential Components of a Data Diode
	Commodity Hardware for Data Diodes
	Software for Data Diodes

	Method
	Data Diode Assembly
	Testing Software for Unidirectional Data Transfer

	Results
	Discussion and Future Work

